Skip to content

Bayesian Interval Estimators

Bayesian Learning of CTMC Transition Rates

  • Given two states \(s_i\) and \(s_j\) of a continuous-time Markov chain (CTMC) such that transitions from \(s_i\) to \(s_j\) occur with rate \(\lambda\), each transition from \(s_i\) to \(s_j\) is independent of how state \(s_i\) was reached (the Markov property).
  • The time spent in state \(s_i\) before a transition to \(s_j\) is modelled by a homogeneous Poisson process of rate \(\lambda\).
  • The likelihood that "data" collected by observing the CTMC shows \(n\) such transitions occurring within a combined time \(t\) spent in state \(s_i\) is given by the conditional probability:
\[ l(\lambda) = \mathit{Pr}\left(data \mid \lambda\right)=\frac{\left(\lambda t\right)^{n}}{n!}e^{-\lambda t} \]
  • The rate \(\lambda\) is typically unknown, but prior beliefs about its value are available (e.g., from domain experts or from past experience) as a probability (density or mass) function \(f(\lambda)\).
  • Thus, the Bayes Theorem can be used to derive a posterior probability function that combines the likelihood \(l(\lambda)\) and the prior \(f(\lambda)\) into a better estimate for \(\lambda\) at time \(t\):
\[ f(\lambda\mid data) = \frac{l(\lambda)f(\lambda)}{\int_{0}^{\infty} l(\lambda)f(\lambda) d\lambda} \]

BIPP Estimator

The Bayesian inference using partial priors (BIPP) estimator is used to model extremely rare events, including major failures and the successful completion of difficult one-off tasks. Typically, no observations of these events are available and only limited domain knowledge is often available to select and justify a prior distribution for these singular events.

The BIPP estimator requires only limited, partial prior knowledge instead of the complete prior distribution typically needed for Bayesian inference.

Partial prior knowledge

Instead of a prior distribution \(f(\lambda)\), we assume that we only have limited partial knowledge comprising \(m\geq 2\) confidence bounds on \(f(\lambda)\): $$ Pr(\epsilon_{i-1} < \lambda \leq \epsilon_i)=\theta_i $$ where \(1\leq i \leq m\), \(\theta_i>0\), and \(\sum_{i=1}^{m} \theta_i=1\)1

BIPP Theorem

The set \(S_\lambda\) of posterior estimate rates of all prior distributions \(f(\lambda)\) satisfying the partial prior knowledge conditions has an infinum \(\lambda_l\) and a supremum \(\lambda_u\) given by: $$ \lambda_l = \min { \frac{\sum_{i=1}^m [\epsilon_i l(\epsilon_i)(1-x_i)\theta_i+\epsilon_{i-1}l(\epsilon_{i-1})x_i\theta_i]} {\sum_{i=1}^{m} [l(\epsilon_{i})(1-x_i)\theta_i+l(\epsilon_{i-1})x_i\theta_i]} \bigg| \forall 1\leq i\leq m . x_i\in[0,1] } $$

BIPP closed-form formulae

When \(m=3\), the BIPP bounds satisfy:

\[ \lambda_l \geq \begin{cases} \frac{\epsilon_{1}l(\epsilon_{1})\theta_2}{\theta_1+l(\epsilon_{1})\theta_2}, & \text{if } \frac{\theta_2 (\epsilon_{1}-\epsilon_2)}{\theta_1} > \frac{\epsilon_{2}l(\epsilon_{2})- \epsilon_{1}l(\epsilon_{1}) }{l(\epsilon_{1})l(\epsilon_{2})}\\ \frac{\epsilon_{2}l(\epsilon_{2})\theta_2}{\theta_1+l(\epsilon_{2})\theta_2}, & \text{otherwise} \end{cases} \]
\[ \lambda_u < \begin{cases} \frac{\epsilon_1 l(\epsilon_1) \theta_1 +\epsilon_2 l(\epsilon_2) \theta_2+\frac{1}{t} l(\frac{1}{t})(1-\theta_1-\theta_2)} { l(\epsilon_1) \theta_1 }, & \text{if } t < \frac{1}{\epsilon_{2}}\\ \frac{\epsilon_1 l(\epsilon_1) \theta_1 +\frac{1}{t} l(\frac{1}{t}) \theta_2+\epsilon_2 l(\epsilon_2)(1-\theta_1-\theta_2)} { l(\epsilon_1) \theta_1 }, & \text{if } \frac{1}{\epsilon_{2}} \leq t \leq \frac{1}{\epsilon_{1}}\\ \frac{\epsilon_1 l(\epsilon_1) (\theta_1+\theta_2) +\epsilon_2 l(\epsilon_2)(1-\theta_1-\theta_2)} { l(\epsilon_1) \theta_1 }, & \text{otherwise} % t > \frac{1}{\epsilon_{1}} \end{cases} \]
  • When \(m=2\), \(\epsilon_2=\epsilon_1\) and \(\theta_2=0\)

IPSP Estimator

The Bayesian inference using imprecise probability with sets of priors (IPSP) estimator is used to model regularly occurring events.

Instead of point values, the IPSP estimator uses ranges \([\underline{t}^{(0)},\overline{t}\textrm{}^{(0)}]\) and \([\underline{\lambda}^{(0)},\overline{\lambda}\textrm{}^{(0)}]\) for the prior knowledge of time and rate, respectively.

Posterior value calculation

The posterior value \(\lambda^{(t)}\) for the transition rate after observing \(n\) transitions within \(t\) time units is derived using classical Bayesian theory:

\[ \lambda^{(t)} =\frac{t^{(0)}}{t+t^{(0)}}\lambda^{(0)} +\frac{t}{t+t^{(0)}}\frac{n}{t} \]

IPSP closed-form formulae

Given uncertain prior parameters \(t^{(0)}\in[\underline{t}^{(0)},\) \(\overline{t}\textrm{}^{(0)}]\) and \(\lambda^{(0)}\in[\underline{\lambda}^{(0)},\overline{\lambda}\textrm{}^{(0)}]\), the posterior rate \(\lambda^{(t)}\) can range in the interval \([\underline{\lambda}^{(t)},\overline{\lambda}\textrm{}^{(t)}]\), where:

\[ \underline{\lambda}^{(t)}= \begin{cases} \frac{\overline{t}\text{}^{(0)}\underline{\lambda}^{(0)}+n}{\overline{t}\text{}^{(0)}+t}, & \text{if } \frac{n}{t} \geq \underline{\lambda}^{(0)}\\ \frac{\underline{t}^{(0)}\underline{\lambda}^{(0)}+n}{\underline{t}^{(0)}+t}, & \text{otherwise} %\quad \frac{n}{t} <\underline{\lambda}^{(0)} \end{cases} \]
\[ \overline{\lambda}^{(t)}= \begin{cases} \frac{\overline{t}\text{}^{(0)}\overline{\lambda}\text{}^{(0)}+n}{\overline{t}\text{}^{(0)}+t}, & \text{if } \frac{n}{t} \leq \overline{\lambda}\text{}^{(0)}\\ \frac{\underline{t}^{(0)}\overline{\lambda}\text{}^{(0)}+n}{\underline{t}^{(0)}+t}, & \text{otherwise} %\quad \frac{n}{t} >\overline{\lambda}\text{}^{(0)} \end{cases} \]

  1. \(Pr(\lambda\geq \epsilon_0)=Pr(\lambda\leq \epsilon_m)=1\); when no specific information is available, \(\epsilon_0=0\) and \(\epsilon_m=+\infty\)